How Reproducible Is Bioluminescent Imaging of Tumor Cell Growth? Single Time Point versus the Dynamic Measurement Approach

Author:

Baba Shingo1,Cho Steve Y.1,Ye Zhaohui1,Cheng Linzhao1,Engles James M.1,Wahl Richard L.1

Affiliation:

1. From the Division of Nuclear Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Medical Institutions, Baltimore, MD; Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD; and Graduate Immunology Program, Johns Hopkins University, Baltimore, MD.

Abstract

To determine the most robust and reproducible parameters for noninvasively estimating tumor cell burden in a murine model, we used real-time in vivo bioluminescent imaging to assess the growth kinetics and dissemination of luciferase-transfected Raji B-cell lymphoma. Bioluminescent signals were acquired every minute for 40 minutes after luciferin injection every other day post-tumor injection. The total 40-minute area under the curve (AUC) of photon intensity (photons/second) was calculated and compared with simplified fixed time point observations (every 5 minutes from 5 to 40 minutes after substrate injection). There was substantial variability in the shape of the time signal intensity curves at different stages of tumor growth in both the intravenous and subcutaneous models. The coefficient of variance in the AUC was 0.27 (intravenous) and 0.36 (subcutaneous) as values determined by fitting the curve, whereas the 20-minute time point measurement varied at 0.29 (intravenous) and 0.37 (subcutaneous). In both the subcutaneous and intravenous models, single time point measurements at 20 minutes had the highest correlation value with AUC. This simplified single time point measurement appears appropriate to estimate the total tumor burden in this model, but the substantial variance at each measurement must be considered in experimental designs.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Radiology Nuclear Medicine and imaging,Biomedical Engineering,Molecular Medicine,Biotechnology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3