Clustering of countries according to programme for international student assessment (PISA) scores

Author:

SÖZEN Çağlar1ORCID,BULUT Hasan2ORCID

Affiliation:

1. GİRESUN ÜNİVERSİTESİ

2. ONDOKUZ MAYIS ÜNİVERSİTESİ

Abstract

This study aims to cluster 65 countries based on PISA results. In the study, PISA results (Science-Mathematics-Reading) published by OECD in 2015 and 2018 were used. The main purpose of the analysis is to apply cluster analysis using a multivariate data structure to identify similarities and differences in education systems between countries. In this analysis, the k-means method and the hierarchical clustering algorithm were used to group countries into specific groups, so that countries with similar educational performance were included in the same cluster. In addition, Dunn, Connectivity and Silhouette indexes were used to increase the reliability of the analysis and to determine the optimal number of clusters. According to the validation indexes, k-means method with k=2 was used for 2015 PISA scores while hierarchical clustering algorithm with k=2 was used for 2018 PISA scores. In 2015, Turkey was the only country that changed clusters between the countries clustered according to their PISA scores and the countries clustered according to their PISA scores in 2018, and the reasons for this change were discussed. It is also observed that Turkey was in Cluster-1 in 2015, which includes countries with lower performance, and in Cluster-2 in 2018, which includes countries with higher performance. The clustering methods and indexes used provide a more robust and informed interpretation of the results obtained and make an important contribution to understanding the education systems of countries based on PISA results and grouping countries with similar performance.

Publisher

Gumushane University Journal of Science and Technology Institute

Reference17 articles.

1. Acar, T. (2012). Türkiye’nin PISA 2009 sonuçlarına göre OECD’ye üye ve aday ülkeler arasındaki yeri. Kuram ve Uygulamada Eğitim Bilimleri, 12(4), 2561-2572.

2. Akın, H. B., & Özge, E. (2012). OECD ülkelerinin eğitim göstergelerinin kümeleme analizi ve çok boyutlu ölçekleme analizi ile karşılaştırmalı analizi-OECD countries with education indicators comparative analysis of cluster analysis and multi-dimensional scaling analysis. Öneri Dergisi, 10(37), 175-181.

3. Aksu, G., Guzeller, C., & Eser, M. (2017). Analysis of maths literacy performances of students with Hierarchical Linear Modeling (HLM): The Case of PISA 2012 Turkey. Eğitim ve Bilim -Education and Science, 42(191).

4. Begum, S. F., Kaliyamurthie, K. P., & Rajesh, A. (2016). Comparative study of clustering methods over Ill-structured datasets using validity indices. Indian Journal of Science and Technology, 9(12), 1-6.

5. Brock, G., Pihur, V., Datta, S., & Datta, S. (2008). clValid: An R package for cluster validation. Journal of Statistical Software, 25, 1-22.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3