Estimation of contact lengths using deep learning neural network

Author:

POLAT Alper1ORCID

Affiliation:

1. MUNZUR ÜNİVERSİTESİ

Abstract

One of the most common problems in engineering is contact problems. In recent years, researchers have turned to alternative methods that can offer effective solutions in a shorter time, instead of solutions containing complex and long mathematical expressions. This study focuses on the estimation of the contact lengths in a homogeneous elastic layer suppressed by two elastic punches with two solution methods. Firstly, a new model was designed for estimation using Deep Learning Neural Network (DNN), one of the deep learning structures. Estimation of contact lengths was provided with the output of the DNN model, which was fed with the homogeneous elastic layer, the ratio of shear modules of the punches and the input parameters of punch radii. The finite element method was used as the second solution method. The problem was modeled in the ANSYS programme and the solution was made with the same parameters used in DNN modeled. The results obtained from both solutions were compared with the solutions obtained by the theory of elasticity and classical NN in the literature. It had been seen that the results obtained with DNN and ANSYS were compatible with the results obtained with analytical and classical NN and the margin of error was smaller.

Publisher

Gumushane University Journal of Science and Technology Institute

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3