Derin özniteliklerin farklı atak senaryolarındaki yüz sahteciliği tespiti başarımlarının incelenmesi

Author:

GÜNAY YILMAZ Asuman1ORCID,ŞAKAR Fırat1ORCID

Affiliation:

1. KARADENİZ TEKNİK ÜNİVERSİTESİ, OF TEKNOLOJİ FAKÜLTESİ, YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ

Abstract

Günümüzde yüz tanıma sistemlerinin kullanımının çoğalmasıyla birlikte bu sistemlere karşı yapılan saldırılar da artmıştır. Özellikle artan sosyal medya kullanımı ile yüz görüntü ve videolarının paylaşımının artışı, saldırganların bu içeriği kullanarak yüz tanıma sistemlerini daha kolay kandırmasına imkân sağlamaktadır. Bu nedenle yüz sahteciliği tespiti (YST) konusu oldukça önemli bir çalışma alanı haline gelmiştir. Yüz sahteciliği saldırıları çeşitli türlerde gerçekleştirilmektedir. Genellikle çalışmalarda tüm atak türlerinin birlikte değerlendirildiği senaryolar üzerinde başarım değerlendirilmesi yapılmaktadır. Bu nedenle bu çalışmada Replay-Attack veri setindeki Basılı Fotoğraf (Printed Photo), Dijital Fotoğraf (Digital Photo) ve Video Oynatma (Replay Video) saldırı türlerinde derin öğrenme yöntemlerinin YTS başarımları değerlendirilmiştir. Bu amaçla ilk aşamada VGG16, DenseNet121 ve MobileNet derin ağ mimarilerinin bu saldırı türlerindeki YST başarımları incelenmiştir. İkinci aşamada her bir ağın ürettiği derin özniteliklerin klasik makine öğrenmesi yöntemi olan destek vektör makineleri (Support Vector Machines – SVM) ile sınıflandırılması sonucu YST başarımlarındaki değişim incelenmiştir. Son olarak VGG16, DenseNet121 ve MobileNet ağlarının ürettikleri derin öznitelikler birleştirilerek (öznitelik seviyesinde birleştirme - feature level fusion) tüm saldırı türleri için SVM ile gerçek/sahte sınıflandırması gerçekleştirilmiştir. Yapılan deney sonuçlarına göre derin özniteliklerin ya da birleşimlerinin SVM ile sınıflandırılması saldırı türüne göre YST başarımını artırmaktadır.

Publisher

Gumushane University Journal of Science and Technology Institute

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3