Determining the optimal reduction ratio in temper rolling in terms of residual stress distribution across thickness

Author:

ÇOLAK Bilal1ORCID

Affiliation:

1. KARABUK UNIVERSITY, ESKİPAZAR VOCATIONAL SCHOOL

Abstract

Materials with compressive stresses on the surface withstand fatigue failures, cracking, galling, and corrosion. This compressive stress at the surface can be created by temper rolling. The rolling process must be conducted with an appropriate reduction to obtain the desired benefit from temper rolling. A 1% thickness reduction is usually applied to endow flatness and surface texture to the strip, and this reduction is sufficient to eliminate the discontinuous yielding phenomenon. In this study, 2.5-mm-thick low-carbon steel sheet (DC01 grade) samples were annealed at approximately 600°C for 5 minutes, temper-rolled at room temperature at various reduction ratios subsequently, and the residual stresses formed along the thickness by rolling were investigated. This study has revealed that a 1% reduction ratio is insufficient for developing compressive stresses on the surface, but this can only be achieved with a 1.5% reduction ratio. When the reduction ratio was increased to 1.8%, tensile stresses began to occur inside, along with compressive stresses on the surface. It was observed that at a reduction ratio of 2%, the situation was reversed again; tensile stresses began to regenerate at the surface, and this became more pronounced up to a 10% reduction ratio.

Funder

KARABÜK ÜNİVERSİTESİ

Publisher

Gumushane University Journal of Science and Technology Institute

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3