Selection of Robot for Contour Crafting Using Analytical Hierarchy Process

Author:

Shanmugasundaram SenthilrajaORCID,Muthaiah RajaORCID

Abstract

The use of robotic equipment and a new technique called contour crafting allows for the construction of buildings at lower labor and material costs. The selection of the type of robot is an important factor that affects the overall performance of the contour crafting (CC) system. Various robot configurations, such as gantry, cylindrical, and SCARA, may be employed for contour crafting. There are benefits and drawbacks to using different types of robots for various tasks, including cost, work volume, material compatibility, and precision. Identifying a proper robot using the multi-criterion decision-making (MCDM) technique is crucial for successful building automation. This article uses the analytical hierarchy process (AHP) method to rank the best robots according to several characteristics. Cartesian robots, cylindrical robots, and SCARA robots were evaluated based on cost, accuracy, work volume, surface finish, type of profile, and speed. The results showed that the gantry-type robot is the most suitable option, while the cylindrical robot is unsuitable for building construction due to lower accuracy.

Publisher

University of Zielona Góra, Poland

Reference35 articles.

1. Allouzi, R Al-Azhari, W and Allouzi, R 2020. Conventional construction and 3D printing: A comparison study on material cost in Jordan. Journal of Engineering, 2020, 1-14.

2. Khoshnevis, B Carlson, A and Thangavelu, M 2017. ISRU-based robotic construction technologies for lunar and martian infrastructures. NIAC Phase II Final Report (No. HQ-E-DAA-TN41353).

3. Khoshnevis, B Hwang, D Yao, KT and Yeh, Z 2006. Mega-scale fabrication by contour crafting. International Journal of Industrial and Systems Engineering, 1(3), 301-320.

4. Khoshnevis, B 2004. Automated construction by contour crafting—related robotics and information technologies. Automation in construction, 13(1), 5-19.

5. Rouhana, CM Aoun, MS Faek, FS Eljazzar, MS and Hamzeh, FR 2014. The reduction of construction duration by implementing contour crafting (3D printing). Proceedings of the 22nd Annual Conference of the IGLD: Understanding and Improving Project Based Production, Oslo, Norway, 1031-1042.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3