Affiliation:
1. Department of Instrumentation and Control Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
Abstract
Lung sound (LS) signals are vital for diagnosing pulmonary disorders. However, heart sound (HS) interferes with the analysis of LS, leading to the misdiagnosis of lung disorders. To address this issue, we propose an Enhanced Variational Mode Decomposition (E-VMD) technique to remove HS interference from LSs effectively. The E-VMD method automatically determines the mode number for signal decomposition based on the characteristics of variational mode functions (VMFs) such as normalized permutation entropy, kurtosis index, extreme frequency domain, and energy loss coefficient. The performance of the proposed denoising technique was evaluated using six performance metrics: Signal-to-noise ratio (SNR), root mean square error (RMSE), normalized mean absolute error (nMAE), correlation coefficient factor (CCF), CPU[Formula: see text], and CPU[Formula: see text]. In comparison to other denoising methods such as empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), complementary ensemble empirical mode decomposition (CEEMD), singular spectrum analysis (SSA), and variational mode decomposition (VMD), the new E-VMD method demonstrates superior denoising outcome. The proposed method was evaluated using LS recorded from the outpatient department of Thoracic Medicine at Thanjavur Medical College and Hospital, Thanjavur. The obtained performance measures are as follows: RMSE: 0.02103 ± 0.00054, SNR: 28.52464 ± 0.00253, nMAE: 0.00009 ± 0.00056, CCF: 0.9962, CPU[Formula: see text]: 34.586, and CPU[Formula: see text]: 0.452 s. These results affirm the adaptability and robustness of the proposed method, even in the existence of HS noise. This method improves denoising accuracy and computational efficacy, making it a useful tool for improving the analysis of LS signals and assisting in medical diagnostics. This technique utilizes an electronic stethoscope, a common clinical device used by healthcare professionals for detecting lung disease.
Publisher
National Taiwan University
Subject
Biomedical Engineering,Bioengineering,Biophysics