DCAE-UNET: IMPROVED OPTIC DISC SEGMENTATION MODEL USING SEMI-SUPERVISED DEEP DILATED CONVOLUTION AUTOENCODER-BASED MODIFIED U-NET

Author:

Shalini R.1,Gopi Varun P.1ORCID

Affiliation:

1. Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015, India

Abstract

An accurate assessment of the morphological characteristics of the Optic Disc (OD) is essential for the diagnosis of various retinal disorders. It is necessary to segment the OD precisely to detect structural OD changes associated with visual field loss. Although deep learning models are effective for this task, they require extensive labeled datasets, which can be time-consuming and costly. Furthermore, fundus images have multi-scale features, making segmentation challenging. In this study, we present a semi-supervised and transfer learning approach for OD segmentation. Our approach utilizes an improved Dilated Convolutional AutoEncoder (DCAE) and a pre-trained modified U-Net to segment the OD. The DCAE segments the OD using feature similarity from unlabeled images in the Messidor dataset and saves the learned weights. Transfer learning is then applied to reuse the model weights in the U-Net, accelerating training on small datasets such as Drions-DB and Drishti-GS. The network architecture was modified by increasing the layers from 8 to 128 and halving the feature map length and width. To address the multi-scale challenge without inflating the model parameters, we introduce the Dilated Hierarchical Feature Extraction Module (DHFEM), a convolutional module capable of achieving multi-scale feature extraction without increasing model parameters. Additionally, DHFEM incorporates convolutional layers with varying receptive fields, further enhancing the network ability to extract features across multiple scales. Our OD segmentation method outperforms existing algorithms with reduced parameter quantities of 0.4 M. The mean Intersection over Union (mIoU) values are 0.9383 and 0.9629 and inference times of 45 ms and 40 ms for the Drions-DB and Drishti-GS datasets, respectively.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3