DETECTION AND CLASSIFICATION OF COVID-19 CASES FROM OTHER CARDIOVASCULAR CLASSES FROM ELECTROCARDIOGRAPHY SIGNALS USING DEEP LEARNING AND ResNet NETWORK

Author:

Akbari Shokufeh1,Ebrahimi Faraz Edadi2,Rajabioun Mehdi3

Affiliation:

1. Tabriz University, Tabriz, Iran

2. KNT University of Technology, Tehran, Iran

3. Mamaghan Branch of Islamic Azad University, Mamaghan, Iran

Abstract

Nowadays, the world confronts a highly infectious pandemic called coronavirus (COVID-19) and over 4 million people worldwide have now died from this illness. So, early detection of COVID-19 outbreak and distinguishing it from other diseases with the same physical symptoms can give enough time for treatment with true positive results and prevent coma or death. For early recognition of COVID-19, several methods for each modality are proposed. Although there are some modalities for COVID-19 detection, electrocardiography (ECG) is one of the fastest, the most accessible, the cheapest and the safest one. This paper proposed a new method for classifying COVID-19 patients from other cardiovascular disease by ECG signals. In the proposed method, ResNet50v2 which is a kind of convolutional neural network, is used for classification. In this paper because of image format of data, first data with image format are applied to the network and then for comparison, ECG images are changed to signal format and classification is done. These two strategies are used for COVID-19 classification from other cardiac abnormalities with different filter sizes and the results of strategies are compared with each other and other methods in this field. As it can be concluded from the results, signal-based data give better accuracy than image classification at best performance and it is better to change the image format to signals for classification. The second result can be found by comparing with other methods in this field, the proposed method of this paper gives better performance with high accuracy in COVID-19 classification.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3