SEGAN-BASED LESION SEGMENTATION AND OPTIMIZED RideNN FOR DIABETIC RETINOPATHY CLASSIFICATION

Author:

Sagvekar Vidya1,Joshi Manjusha2

Affiliation:

1. Electronics and Telecommunication Engineering, Mukesh Patel School of Technology Management and Engineering, Vileparle, Mumbai 400056, Maharashtra, India

2. Amity School of Engineering and Technology, Bhatan, Panvel, Raigad 410206, Maharashtra, India

Abstract

The most significant issue with diabetes is diabetic retinopathy (DR), which is the primary cause of blindness. DR typically develops no symptoms at the beginning of the disease, thus numerous physical examinations, including pupil dilation and a visual activity test, are necessary for DR identification. Due to the differences and challenges of DR, it is more challenging to identify it during the manual assessment. For DR patients, visual loss is prevented thanks to early detection and accurate therapy. Therefore, it is even more necessary to classify the severity levels of DR in order to provide a successful course of treatment. This study develops a deep learning method based on chronological rider sea lion optimization (CRSLO) for the classification of DR. The segmentation process divides the image into multiple subgroups, which is necessary for the appropriate detection and classification procedure. For the efficient identification of DR and classification of DR severity, the deep learning approach is used. Additionally, the CRSLO scheme is used to train the deep learning technique to achieve higher performance. With respect to testing accuracy, sensitivity, and specificity of 0.9218, 0.9304 and 0.9154, the newly introduced CRSLO-based deep learning approach outperformed other existing DR classification techniques like convolutional neural networks (CNNs), deep convolutional neural network (DCNN), synergic deep learning (SDL), HPTI-V4 and DR[Formula: see text]GRADUATE. The Speech Enhancement Generative Adversarial Network (SEGAN) model in use also produced increased segmentation accuracy of 0.90300.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3