PROSTATE CANCER DETECTION USING HISTOPATHOLOGY IMAGES AND CLASSIFICATION USING IMPROVED RideNN

Author:

Gurav Shashidhar B.1,Kulhalli Kshama V.2,Desai Veena V.3

Affiliation:

1. Sharad Institute of Technology, College of Engineering, Ichal Karanji, Kolhapur 416121, Maharashtra, India

2. D Y Patil College of Engineering and Technology, Kasaba Bawada, Kolhapur 416006, Maharashtra, India

3. Department of Computer Science and Engineering, KLS Gogte Institute of Technology, Udyambag, Belagavi 590008, Karnataka, India

Abstract

Medical industry reports prostate cancer as common and high among men and alarms the necessity for detecting prostate cancer for which the required morphology is extracted from the histopathology images. Commonly, the Gleason grading system remains a perfect factor for grading prostate cancer in men, but pathologists suffer from minute inter- and intra-observer variations. Thus, an automatic method for segmenting and classifying prostate cancer is modeled in this paper. The significance of the developed method is that the segmentation and classification are gland-oriented using the Color Space (CS) transformation and Salp Swarm Optimization Algorithm-based Rider Neural Network (SSA-RideNN). The gland region is considered as the morphology for cancer detection from which the maximal significant regions are extracted as features using multiple-kernel scale-invariant feature transform (MK-SIFT). Here, the RideNN classifier is trained optimally using the proposed Salp–Rider Algorithm (SRA), which is the integration of Salp Swarm Optimization Algorithm (SSA) and Rider Optimization Algorithm (ROA). The experimentation is performed using the histopathology images and the analysis based on sensitivity, accuracy, and specificity reveals that the proposed prostate cancer detection method acquired the maximal accuracy, sensitivity, and specificity of 0.8966, 0.8919, and 0.8596, respectively.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3