EFFICIENT RETINAL IMAGE ENHANCEMENT USING MORPHOLOGICAL OPERATIONS

Author:

Ashanand 1,Kaur Manpreet1ORCID

Affiliation:

1. Department of Electrical and Instrumentation Engineering, Sant Longowal Institute of Engineering and Technology, Sangrur, Punjab, India

Abstract

Manual analysis of retinal images is a complicated and time-consuming task for ophthalmologists. Retinal images are susceptible to non-uniform illumination, poor contrast, transmission error, and noise problems. For the detection of retinal abnormalities, an efficient technique is required that can identify the presence of retinal complications. This paper proposes a methodology to enhance retinal images that use morphological operations to improve the contrast and bring out the fine details in the suspicious region. The enhancement plays a vital role in detecting abnormalities in the retinal images. Luminance gain metric ([Formula: see text] is obtained from Gamma correction on luminous channel of [Formula: see text]*[Formula: see text]*[Formula: see text] (hue, saturation, and value) color model of retinal image to improve luminosity. The efficiency and strength of the proposed methodology are evaluated using the performance evaluation parameters peak signal to noise ratio (PSNR), mean square error (MSE), mean absolute error (MAE), feature structural similarity index metric (FSIM), structural similarity index metric (SSIM), spectral residual index metric (SRSIM), Reyligh feature similarity index metric (RFSIM), absolute mean brightness error (AMBE), root mean square error (RMSE), image quality index (IQI), and visual similarity index (VSI). It has been revealed from the results and statistical analysis using the Friedman test that the proposed method outperforms existing state-of-the-art enhancement techniques.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3