HEp-2 CELL CLASSIFICATION BY ADAPTIVE CONVOLUTIONAL LAYER BASED CONVOLUTIONAL NEURAL NETWORK

Author:

Manju C. C.1,Jose M. Victor2

Affiliation:

1. Department of Computer Science & Engineering, Noorul Islam Center for Higher Education, Kumaracoil, Tamilnadu, India

2. Department of MCA, Noorul Islam Center for Higher Education, Kumaracoil, Tamilnadu, India

Abstract

Objective: The antinuclear antibodies (ANA) that present in the human serum have a link with various autoimmune diseases. Human Epithelial type-2 (HEp-2) cells acts as a substance in the Indirect Immuno fluorescence (IIF) test for diagnosing these autoimmune diseases. In recent times, the computer-aided diagnosis of autoimmune diseases by the HEp-2 cell classification has drawn more interest. Though, they often pose limitations like large intra-class and small inter-class variations. Hence, various efforts have been performed to automate the procedure of HEp-2 cell classification. To overcome these problems, this research work intends to propose a new HEp-2 classification process. Materials and Methods: This is regulated by integrating two processes, namely, segmentation and classification. Initially, the segmentation of the HEp-2 cells is carried out by deploying the morphological operations. In this paper, two morphology operations are deployed called opening and closing. Further, the classification process is exploited by proposing a modified Convolutional Neural Network (CNN). The main objective is to classify the HEp-2 cells effectively (Centromere, Golgi, Homogeneous, Nucleolar, NuMem, and Speckled) and is made by exploiting the optimization concept. This is implanted by developing a new algorithm called Distance Sorting Lion Algorithm (DSLA), which selects the optimal convolutional layer in CNN. Results: Through the performance analysis, the performance of the proposed model for test case 1 at learning percentage 60 is 3.84%, 1.79%, 6.22%, 1.69%, and 5.53% better than PSO, FF, GWO, WOA, and LA, respectively. At 80, the performance of the proposed model is 5.77%, 6.46%, 3.95%, 3.24%, and 5.55% better from PSO, FF, GWO, WOA, and LA, respectively. Hence, the performance of the proposed work is proved over other models under different measures. Conclusion: Finally, the performance is evaluated by comparing it with the other conventional algorithms in terms of accuracy, sensitivity, specificity, precision, FPR, FNR, NPV, MCC, F1-Score and FDR, and proves the efficacy of the proposed model.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3