HYBRID AI MODEL FOR THE DETECTION OF RHEUMATOID ARTHRITIS FROM HAND RADIOGRAPHS

Author:

Ahalya R. K.1,Snekhalatha U.1,Krishnan Palani Thanaraj2

Affiliation:

1. Department of Biomedical Engineering, College of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India

2. Department of Electronics & Instrumentation Engineering, St. Joseph’s College of Engineering & Technology, Anna University, Chennai, India

Abstract

The study aims to develop a computerized hybrid model using artificial intelligence (AI) for the detection of rheumatoid arthritis (RA) from hand radiographs. The objectives of the study include (i) segmentation of proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joints using the deep learning (DL) method, and features are extracted using handcrafted feature extraction technique (ii) classification of RA and non-RA participants is performed using machine learning (ML) techniques. In the proposed study, the hand radiographs are resized to [Formula: see text] pixels and pre-processed using the various image processing techniques such as sharpening, median filtering, and adaptive histogram equalization. The segmentation of the finger joints is carried out using the U-Net model, and the segmented binary image is converted to gray scale image using the subtraction method. The features are extracted using the Harris feature extractor, and classification of the proposed work is performed using Random Forest and Adaboost ML classifiers. The study included 50 RA patients and 50 normal subjects for the evaluation of RA. Data augmentation is performed to increase the number of images for U-Net segmentation technique. For the classification of RA and healthy subjects, the Random Forest classifier obtained an accuracy of 91.25% whereas the Adaboost classifier had an accuracy of 90%. Thus, the hybrid model using a Random Forest classifier can be used as an effective system for the diagnosis of RA.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3