Affiliation:
1. Institute of Information Engineering, SanMing University, SanMing 365004, P. R. China
2. School of Control Science and Engineering, ShanDong University, JiNan 250000, P. R. China
Abstract
Conventional coronary heart disease (CHD) detection methods are expensive, rely much on doctors’ subjective experience, and some of them have side effects. In order to obtain rapid, high-precision, low-cost, non-invasive detection results, several methods in machine learning were attempted for CHD detection in this paper. The paper adopted multiple evaluation criteria to measure features, combined with heuristic search strategy and seven common classification algorithms to verify the validity and the importance of feature selection (FS) in the Z-Alizadeh Sani CHD dataset. On this basis, a novelty algorithm integrating multiple FS methods into the ensemble algorithm (ensemble algorithm based on multiple feature selection, EA-MFS) was further proposed. The algorithm adopted Bagging approach to increase data diversity, used the aforementioned MFS methods for functional perturbation, employed major voting method to carry out the decision results, and performed selective integration in terms of the difference of base classifiers in the ensemble process. Compared with the single FS method, the EA-MFS algorithm could comprehensively describe the relationship of features, enhance the classification effect, and displayed better robustness. That meant the EA-MFS algorithm could reduce the dependence on dataset and strengthen the stability of the algorithm, all of which were of great significance for the clinical application of machine learning algorithm in coronary heart disease detection.
Funder
Natural Science Foundation of Fujian Province of China
National Natural Science Foundation of China
Publisher
National Taiwan University
Subject
Biomedical Engineering,Bioengineering,Biophysics
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献