OPTICAL SENSOR SYSTEM FOR THE NON-INVASIVE ASSESSMENT OF ARTERIAL STIFFNESS QUANTIFIED BY FOURTH DERIVATIVE OF PHOTOPLETHYSMOGRAM

Author:

Mohanalakshmi S.12,Sivasubramanian A.3

Affiliation:

1. Anna University, Chennai, India

2. Department of Electronics and Communication Engineering, M. N. M Jain Engineering College, Thoraipakkam, Chennai-600 097, TamilNadu, India

3. Tagore Institute of Engineering and Technology, Salem Dt., Tamil Nadu, India

Abstract

Arterial stiffness, resulting in loss of the elastic properties of arteries walls, is an indicator of cardiovascular risk, though the presence of disease is not clinically evident. Augmentation index is an important biomarker of arterial stiffness by which the cardiac risk of the patient can be diagnosed. The current paper outlines the non-invasive assessment of arterial stiffness by analyzing the morphology or contour of PhotoPlethysmoGraph (PPG) signal. PPG pulse was optically acquired with the developed photometric measurement device and the desired features were extracted to determine PPG augmentation Index (PAI) through advanced signal processing implemented in MATLAB. PAI was quantified by the fourth derivative of the signal by enhancing the location of inflection point (augmentation point) after conditioning the signal by efficient pre-processing and filtering techniques. The results reveal that the statistical distribution of PAI for healthy subjects presents a very low value and a very tight distribution. On the contrary, patients have a higher value of PAI and a wide asymmetrical shape of distribution. This work also establishes the usefulness of PPG contour analysis in the investigation of changes in the elastic properties of the vascular system. In conclusion, PAI has revealed to be a non-invasive indicator for arterial stiffness assessments.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing hemodynamics from the photoplethysmogram to gain insights into vascular age: A review from VascAgeNet;American Journal of Physiology-Heart and Circulatory Physiology;2021-12-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3