CREATION OF CLINICALLY-DIFFERENTIAL TUMOR MIMIC MODEL USING VASELINE-BASED MATERIALS WITH BARIUM SULFATE FOR THE VALIDATION OF REAL-TIME ULTRASOUND IMAGE-GUIDED LIVER BIOPSY SYSTEM

Author:

Li Cheng1,Teo Jin Yao2,Wu Jiaze1,Gogna Apoorva3,Tan Bien Soo3,Ooi London Lucien2,Liu Jimin4,Yu Haoyong1

Affiliation:

1. Department of Biomedical Engineering, National University of Singapore, Singapore

2. Division of Surgery, Singapore General Hospital (SGH), Singapore

3. Department of Diagnostic Radiology, Singapore General Hospital (SGH), Singapore

4. Hexalotus Technology Pte Ltd, Singapore

Abstract

Testing objects are important for the validation of developing biopsy systems. Unfortunately, they are very hard to obtain. Motivated by this issue, the purpose of this study is to develop a technique for the easy creation of a model to simulate tumors of different sizes inside porcine livers, which could be used for ultrasound image-guided liver biopsy amongst other applications, and evaluate its performance by comparing to the more widely-used approaches in-vivo and ex-vivo. In this study, a Vaseline-based tumor model, and a more widely-used agar-based tumor model to provide comparison with the proposed method were created and injected into porcine livers as biopsy targets. The clinician located simulated tumors using real-time 2D imaging under the guidance of a robotic arm to delivery the biopsy in ex-vivo and in-vivo experiments. The results show that the optimum tumor model was created from a mixture of Vaseline, glycerol, and barium sulfate which can be easily produced and injected. All Vaseline-based simulated tumors were of solid, palpable mass on gross examination, and ultrasound imaging revealed clearly visible lesions. The clinician successfully performed ultrasound image guided liver biopsy in all the trials (10/10) in the ex-vivo experiment, and 2 out of 3 trials (2/3) in the in-vivo experiment on this optimum tumor model. We described a novel technique of creating solid liver tumor models that can be used for ultrasound image-guided liver biopsy.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3