AUTOMATED CLASSIFICATION OF AUTISM SPECTRUM DISORDER USING EEG SIGNALS AND CONVOLUTIONAL NEURAL NETWORKS

Author:

Mohi ud Din Qaysar1,Jayanthy A. K.1

Affiliation:

1. Department of Biomedical Engineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai 603203, Tamilnadu, India

Abstract

Children suffering from Autism Spectrum Disorder (ASD) have impaired social communication, interaction and restricted and repetitive behaviors. ASD is caused by abnormal brain developments which give rise to the behavioral characteristics associated with ASD. The clinical diagnosis of ASD is performed on the basis of behavioral assessment and it causes a time delay in early intervention, as there is a time gap between abnormal brain developments and associated behavioral characteristics. Electroencephalography (EEG) is a technique which measures the electrical activity produced by the brain and it has been used to detect several neurological disorders. Studies have shown that there is a variation in the EEG signals of a normal subject and EEG signals of ASD subjects. In this study, we obtained scalograms of EEG signals by using Continuous Wavelet Transform (CWT). Pre-trained deep Convolutional Neural Networks (CNNs) such as GoogLeNet, AlexNet, MobileNet and SqueezeNet were used for extracting the features from scalograms and classification of obtained scalograms from EEG signals of normal and ASD subjects. We also used Support Vector Machine (SVM) algorithm and Relevance Vector Machine (RVM) for classification of the features extracted by the deep CNNs. The GoogLeNet, AlexNet, MobileNet and SqueezeNet deep CNNs achieved a validation accuracy of 75%, 75.84%, 79.45% and 82.98% in classifying the scalograms generated from EEG signals. The SVM achieved an accuracy of 71.6%, 74.76%, 70.70% and 81.47% using GoogleNet, Mobilenet, AlexNet and SqueezeNet for scalogram feature extraction. The RVM achieved an accuracy of 65.5%, 69.9%, 65.3% and 72.59% when used for classification using the features generated from GoogLeNet, AlexNet, MobileNet and SqueezeNet.The SqueezeNet deep CNN performed better than GoogLeNet, AlexNet and MobileNet for classification of the EEG scalograms. The feature extraction using SqueezeNet also resulted in better classification accuracy obtained by SVM and RVM. The results indicate that pre-trained models can be used for classifying the ASD using scalograms of the EEG signals.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3