AUTOMATIC BREAST CANCER ASSESSMENT IN HER-2/neu IMMUNOHISTOCHEMISTRY

Author:

Chang Chuan-Yu1,Chang Chuan-Wang2,Huang Ya-Chi1,Ko Chien-Chuan3

Affiliation:

1. Department of Computer Science and Information Engineering, National Yunlin University of Science and Technology, Taiwan

2. Department of Computer Science and Information Engineering, Far East University, Taiwan

3. Department of Computer Science and Information Engineering, National Chiayi University, Taiwan

Abstract

Breast cancer is the second most common cancer in females, after lung cancer in the world. In Taiwan, there are about 8500 female suffering from breast cancer every year. The incidence of breast cancer has exceeded cervical cancer and has become the most common female cancer. Immunohistochemistry (IHC) image is widely applied to the diagnosis of breast cancer, but it requires a great deal of manpower and time. The IHC images are scoring as {0+, 1+, 2+ and 3+} corresponding to no staining, weak, moderate and strong staining, respectively. With the growing of image processing techniques, computer-assisted technologies are the best solution to reduce the variability of pathologists evaluation and provide highly specific per-cell information. Therefore, in this paper, we proposed an automatic method to assess the grade of breast cancer in IHC images. The proposed method consists of four steps, including ROI extraction, feature extraction, feature selection and a hierarchical SVM classifier. The hierarchical SVM classifier is utilized to score the IHC images into 0+ (no staining), 1+ (weak), 2+ (moderate) and 3+ (strong staining). According to the experimental results, the proposed method can automatically and effectively asses the score of IHC images; it provides important information to help physicians treat breast cancer.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3