A MULTISCALE PHASE FIELD METHOD FOR JOINT SEGMENTATION-RIGID REGISTRATION — APPLICATION TO MOTION ESTIMATION OF HUMAN KNEE JOINT

Author:

Eslami Abouzar12,Esfandiarpour Fateme3,Shakourirad Ali4,Farahmand Farzam52

Affiliation:

1. Institute for Informatics, Technical University of Munich, Munich, Germany

2. RCSTIM, Tehran University of Medical Sciences, Tehran, Iran

3. Department of Physical Therapy, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran

4. Advanced Diagnostic and Interventional, Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran

5. School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

Abstract

Image based registration of rigid objects has been frequently addressed in the literature to obtain an object's motion parameters. In this paper, a new approach of joint segmentation-rigid registration, within the variational framework of the phase field approximation of the Mumford-Shah's functional, is proposed. The defined functional consists of two Mumford-Shah equations, extracting the discontinuity set of the reference and target images due to a rigid spatial transformation. Multiscale minimization of the proposed functional after finite element discretization provided a sub-pixel, robust algorithm for edge extraction as well as edge based rigid registration. The implementation considerations of the proposed method, including memory usage, convergence rate and effects of parameters selection, was discussed and its efficacy was examined in a comprehensive set of synthetic, phantom and clinical experiments. It was found that the proposed joint segmentation-rigid registration method provides improved results, in comparison with the currently available methods which are often based on maximizing images similarities, especially when the reference and target images are of different qualities. A high registration accuracy was obtained when estimating the knee joint kinematics through MR images taken at different joint configurations. It was concluded that the proposed method can be effectively used in applications where 3D image registration of rigid objects is concerned, e.g. for estimation of the motion parameters of human joints.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3