Affiliation:
1. Institute of Mechanical Engineering, Chung Hua University, Hsin Chu, Taiwan 300, Taiwan
2. National Taiwan University Hospital, Taiwan
Abstract
Blood secondary flows and vessel wall shear stress distributions in a human aortic arch have been predicted numerically for a Reynolds number of 4700 at entrance. The simulation geometry was derived from a three-dimensional reconstruction of a series of two-dimensional slices obtained in vivo. Numerical results demonstrate wall stresses were highly dynamic, but were generally high along the outer wall in the vicinity of the branches and low along the inner wall, particularly in the descending thoracic aorta. The maximum wall stress distribution is presented on the aortic arch in the systole. Extensive secondary flow motion was observed in the aorta, and the structure of these secondary flows was influenced considerably by the presence of the branches. Within the aorta, it is observed that clockwise secondary flow recirculation, also seen in the MRA scan data, appears in the downstream of aortic arch in the late systole and turn out to be a pair of counter-clockwise vortex in the downstream of the arch in the early diastole.
Publisher
National Taiwan University
Subject
Biomedical Engineering,Bioengineering,Biophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献