CALCIFICATION CLUSTERS AND LESIONS ANALYSIS IN MAMMOGRAM USING MULTI-ARCHITECTURE DEEP LEARNING ALGORITHMS

Author:

Tsai Hao-Hung123,Wei Chia-Shin4,Hsieh Ya-Chu4,Chen I-Miao4,Yeh Pin-Yu4,Shih Darren5,Chin Chiun-Li4

Affiliation:

1. Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC

2. Department of Medical Imaging in School of Medicine, Chung Shan, Medical University, Taichung, Taiwan, ROC

3. Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan, ROC

4. Department of Medical Informatics, Chung Shan Medical University, Taichung, Taiwan, ROC

5. Morrison Academy Taichung, Taichung, Taiwan, ROC

Abstract

Today, radiologists observe a mammogram to determine whether breast tissue is normal. However, calcifications on the mammogram are so small that sometimes radiologists cannot locate them without a magnified observation to make a judgment. If clusters formed by malignant calcifications are found, the patient should undergo a needle localization surgical biopsy to determine whether the calcification cluster is benign or malignant. However, a needle localization surgical biopsy is an invasive examination. This invasive examination leaves scars, causes pain, and makes the patient feel uncomfortable and unwilling to receive an immediate biopsy, resulting in a delay in treatment time. The researcher cooperated with a medical radiologist to analyze calcification clusters and lesions, employing a mammogram using a multi-architecture deep learning algorithm to solve these problems. The features of the location of the cluster and its benign or malignant status are collected from the needle localization surgical biopsy images and medical order and are used as the target training data in this study. This study adopts the steps of a radiologist examination. First, VGG16 is used to locate calcification clusters on the mammogram, and then the Mask R-CNN model is used to find micro-calcifications in the cluster to remove background interference. Finally, an Inception V3 model is used to analyze whether the calcification cluster is benign or malignant. The prediction precision rates of VGG16, Mask R-CNN, and Inception V3 in this study are 93.63%, 99.76%, and 88.89%, respectively, proving that they can effectively assist radiologists and help patients avoid undergoing a needle localization surgical biopsy.

Funder

Medical Imaging, Chung Shan Medical University Hospital

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3