MACHINE LEARNING APPROACH TO DETECT ECG ABNORMALITIES USING COST-SENSITIVE DECISION TREE CLASSIFIER

Author:

Patnaik Bipasha1,Palo Hemanta Kumar1,Sahoo Santanu1ORCID

Affiliation:

1. Faculty of Engineering, Siksha O Anusandhan, Odisha 751030, India

Abstract

Cardiac Arrhythmia is an abnormal heart rhythm that develops when the electrical impulses control the heart’s contraction which does not function properly. The heart can beat too fast (tachycardia), too slow (bradycardia), or in an irregular pattern. Observing ECG signal peaks and channels freehand is difficult due to their ingenious modification. Automated detection of cardiovascular abnormalities is preferred for the early diagnosis of cardiac disorders. This paper used machine learning approaches for detecting ECG abnormality utilizing a Support Vector Machine (SVM) and Cost-Sensitive Decision-Tree (CS-DT) classifier. The Empirical Mode Decomposition approach was utilized to examine the properties of R-peaks and QRS complexes in ECG signs. Various morphological characteristics are analyzed from the signal penetrated by the classifier to diagnose the irregular beats. A set of twenty-two clinically feasible features comprising temporal, morphological, and statistical were extracted from the processed ECG signals and applied to the classifier to categorize cardiovascular irregularities like Normal (N), Left Bundle Branch Block (LBBB), Right Bundle Branch Block (RBBB), Atrial Premature Beats (APB), and Premature Ventricular Contraction (PVC). The Beth Israel Hospital at Massachusetts Institute of Technology (MIT-BIH) dataset has been used for this work, where feature datasets are split into training and evaluation subsets. The training set is used to train machine learning models on the extracted features, while the evaluation set is used to assess the performance of the trained models. The evaluation metrics such as Accuracy (Acc), Sensitivity (Se), Specificity (Sp), and Positive Predictivity (Pp), are frequently used to evaluate the model’s performance in Arrhythmia detection along with classification. The simulation has been conducted using SVM and CS-DT classifier with performance for all individual class labels at a Confidence Factor (CF) of 0.5. The performance of the time and frequency domain features is merged resulting in higher classification of Sensitivity, Specificity, Positive Predictivity, and Accuracy of 89.5%, 98.11%, 87.76%, and 96.8% in SVM, 97.71%, 99.58%, 97.66%, 99.32% in CS-DT classifier in identifying the irregular heartbeats.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3