MULTI-MODALITY IMAGE REGISTRATION FOR SUBDURAL ELECTRODE LOCALIZATION

Author:

Dong Shuo1,Liu Yuan1,Cai Lixin2,Bai Mei1,Yan Hanmin1

Affiliation:

1. Department of Medical Engineering, Xuanwu Hospital of Capital Medical University, Beijing 100053, China

2. Beijing Institute of Functional Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing 100053, China

Abstract

Surgical treatment has been proved to be an effective way to control seizures for some kinds of intractable epilepsy. The electrocorticogram (ECoG) recorded from subdural electrodes has become an important technique for defining epileptogenic zones before surgery in clinical practice. The exact location of subdural electrodes has to be determined to establish the connection between electrodes and epileptogenic zones. Artifacts caused by the electrodes can severely affect the quality of CT imaging and sequentially image registration. In this paper, we discussed the performance of mean squares and the Mattes mutual information metric methods in multimodal image registration for subdural electrode localization. Since the skull can be regarded as a rigid body, rigid registration is sufficient for the purpose of subdural electrode localization. The vital parameter for the rigid registration is rotation. The translation result depends on the result of rotation. Both the methods performed well in the determination of the rotation center. Rotation angles of different image pairs of the same volume pair fluctuated a lot. Based on the image acquisition process, we assume that the images within the same volume pair should have the same transformation parameters for registration. Results show that the mean rotation angles of images within one dataset are approximate to the manual results that are considered to be the actual result for registration despite their fluctuation range.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3