A COMPREHENSIVE QRS DETECTION METHOD BASED ON EXCLUSIVE MOTHER WAVELET AND ARTIFICIAL NEURAL NETWORK

Author:

Nosratkhah Pouya1ORCID,Frounchi Javad1

Affiliation:

1. Microelectronic and Micro-Sensor Laboratory, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran

Abstract

Detecting the QRS complex on an ECG signal leads to precious information about the signal under study. Different noises, arrhythmias, and diseases alter the shape and energy of the signal, making it harder to detect the QRS points. Several algorithms for QRS detection have been proposed and most of them merely focus on precision improvement, and therefore certain limitations have emerged with regard to deployment of these algorithms. As a result, while developing the new algorithm, not only efforts have been made to keep the precision at a high level, but also it has been tried to keep an eye on the generality of the algorithm, and to eliminate the end user limitations as much as possible. To this end, we have used an exclusive mother wavelet together with an artificial neural network to develop an algorithm which not only has superior precision, but also does not require changing the tuning parameters for each different signal. In other words, the algorithm extracts the required parameters automatically. In this method, first, an exclusive mother wavelet identical to the input signal is formed. Then, by using the mother wavelet, matrices containing sufficient data to be processed by the neural network are developed. Using these matrices, the existing QRSs will be detected with a sensitivity of 99.81% on MIT-BIH and 99.49% on physiozoo datasets.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3