MULTISCALE BSBL COMPRESSED SENSING-BASED ECG SIGNAL COMPRESSION WITH ENCODING FOR TELEMEDICINE

Author:

Surekha K. S.1,Patil B. P.1,Kumar Ranjeet2,Sharma Davinder Pal3

Affiliation:

1. Army Institute of Technology Pune, Maharashtra, India

2. SENSE, VIT University, Vellore 632014, Tamil Nadu, India

3. University of the West Indies, St. Augustine Campus, Trinidad & Tobago, West Indies

Abstract

An electrocardiogram (ECG) signal is an important diagnostic tool for cardiologists to detect the abnormality. In continuous monitoring, an ambulatory huge amount of ECG data is involved. This leads to high storage requirements and transmission costs. Hence, to reduce the storage and transmission cost, there is a requirement for an efficient compression or coding technique. One of the most promising compression techniques is Compressive Sensing (CS) which makes efficient compression of signals. By this methodology, a signal can easily be reconstructed if it has a sparse representation. This paper presents the Block Sparse Bayesian Learning (BSBL)-based multiscale compressed sensing (MCS) method for the compression of ECG signals. The main focus of the proposed technique is to achieve a reconstructed signal with less error and more energy efficiency. The ECG signal is sparsely represented by wavelet transform. MIT-BIH Arrhythmia database is used for testing purposes. The Huffman technique is used for encoding and decoding. The signal recovery is appropriate up to 75% of compression. The quality of the signal is ascertained using the standard performance measures such as signal-to-noise ratio (SNR) and Percent root mean square difference (PRD). The quality of the reconstructed ECG signal is also validated through the visual method. This method is most suitable for telemedicine applications.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of sensing matrices on quality index parameters for block sparse bayesian learning-based EEG compressive sensing;International Journal of Wavelets, Multiresolution and Information Processing;2022-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3