DIAGNOSIS OF COVID-19 BASED ON ARTIFICIAL INTELLIGENCE MODELS AND PHYSIOLOGICAL SENSORS: REVIEW

Author:

Fahad Suha Dalaf1,Gharghan Sadik Kamel1ORCID,Hussein Raghad Hassan2

Affiliation:

1. Middle Technical University, Electrical Engineering Technical College, Baghdad, Iraq

2. Middle Technical University, College of Health and Medical Technology, Baghdad, Iraq

Abstract

Covid-19 invaded the world very quickly and caused the loss of many lives; maximum emergency was activated all over the world due to its rapid spread. Consequently, it became a huge burden on emergency and intensive care units due to the large number of infected individuals and the inability of the medical staff to deal with patients according to the degree of severity. Covid-19 can be diagnosed based on the artificial intelligence (AI) model. Based on AI, the CT images of the patient’s chest can be analyzed to identify the patient case whether it is normal or he/she has Covid-19. The possibility of employing physiological sensors such as heart rate, temperature, respiratory rate, and SpO2 sensors in diagnosing Covid-19 was investigated. In this paper, several articles which used intelligent techniques and vital signs for diagnosing Covid-19 have been reviewed, classified, and compared. The combination of AI and physiological sensors reading, called AI-PSR, can help the clinician in making the decisions and predicting the occurrence of respiratory failure in Covid-19 patients. The physiological parameters of the Covid-19 patients can be transmitted wirelessly based on a specific wireless technology such as Wi-Fi and Bluetooth to the clinician to avoid direct contact between the patient and the clinician or nursing staff. The outcome of the AI-PSR model leads to the probability of recording and linking data with what will happen later, to avoid respiratory failure, and to help the patient with one of the mechanical ventilation devices.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3