HYBRID CLASSIFICATION STRATEGY OF EMG SIGNALS FOR ROBOTIC HAND CONTROL

Author:

sbargoud Fazia12ORCID,Djeha Mohamed2,Guiatni Mohamed2,Ababou Noureddine1

Affiliation:

1. Instrumentation Laboratory, Houari Boumedienne University of Sciences and Technology, Algiers, Algeria

2. Comlplexe Systems Control Laboratory, Ecole Militaire Polytechnique, Algiers, Algeria

Abstract

Among the different bio-signals modalities, Electromyographic signal (EMG) has been one of the frequently used signals in the bio-robotics applications field. This is due to the fact that the EMG reflects directly the muscle activity of the user following the human motion intention. Consequently, the decoding of this intention is an essential task for controlling devices such as prosthetic hands and exoskeletons, based on EMG signals. This paper deals with the processing of EMG signals of the forearm muscles, in order to control two degrees of freedom (2 DoFs) robotic hand. The main contribution of this paper is the proposal of a hybrid approach that combines a pattern and a non-pattern recognition-based strategy. The proposed approach aims to take advantage of both strategies and overcome their shortcomings leading to a better analysis of the user movement intention. The EMG recorded signals are processed for feature extraction based on a Wavelet Packet Decomposition (WPD) method and classification using an Artificial Neural Network (ANN). Furthermore, we investigate the effect of the various parameters such as the applied force level, the number of the EMG channels and the window length of the EMG signal. The proposed approach is validated experimentally under realistic conditions. Very interesting results have been obtained for user intention decoding.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GRASPING FORCE ESTIMATION FROM TWO-CHANNEL ELECTROMYOGRAPHY SIGNALS USING EXTREME LEARNING MACHINE;Biomedical Engineering: Applications, Basis and Communications;2023-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3