SEGMENTATION OF LIVER TUMOR USING FAST GREEDY SNAKE ALGORITHM

Author:

Rajalakshmi T.1,Snekhalatha U.1,Baby Jisha1

Affiliation:

1. Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India

Abstract

Back Ground: Liver tumors are a type of growth found in the liver which can be categorized as malignant or benign. It is also called as hepatic tumors. Early stage detection of tumor could be treated at a faster phase; if it is left undiagnosed it may lead to several complications. Traditional method adopted for diagnosis can be time consuming, error-prone and also requires an experts study. Hence a non invasive diagnostic method is required which overcomes the flaws of conventional method. Liver segmentation from CT images in post processing techniques not only is an essential prerequisite, but, by playing an important role in confirming liver function, pathological, and anatomical studies, is also a key technique for diagnosis of liver disease. Hence in the proposed study Fast greedy snakes algorithm in abdominal CT images were used for segmenting tumor portion. Aim & Objectives: The aim and objectives of study is: (i) to segment tumor region in the liver image using Fast Greedy Snakes Algorithm (FGSA); (ii) to extract the GLCM features from the segmented region; (iii) to classify the normal and abnormal liver image using neural network classifier. Methodology: The study involved a total of 30 normal and 30 abnormal Images from database. In the proposed study automated segmentation was performed using Fast Greedy Snakes (FGS) Algorithm and the features were extracted using GLCM method. Classification of normal and abnormal images was carried out using Back propagation Neural Network classifier. Result: The proposed FGS algorithm provides accurate segmentation in liver images. Statistical features like mean, kurtosis, correlation and Entropy showed a higher value for the normal image than liver tumor image. On the other hand, features like Skewness, Homogeneity, contrast, Energy and standard deviation showed a comparatively higher value for a liver tumor image than the normal. Statistical features such as Mean, Contrast, Homogeneity and standard deviation are statistically significant at [Formula: see text]. Features like correlation, entropy and energy exhibits significance at [Formula: see text]. The feature extracted values provided significant difference between the normal and abnormal liver images. The neural network classifier yields the sensitivity of 95.8%, sensitivity of 81.4% and achieved the overall accuracy of 92%. Conclusion: A most accurate, reliable and fast automated method was implemented to segment the liver tumor image using Fast Greedy snakes algorithm. Hence the proposed algorithm resulted in effective segmentation and the classifier could classify the normal and abnormal images with greater accuracy.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3