BRAIN SIGNATURES PERSPECTIVE FOR HIGH-SECURITY AUTHENTICATION

Author:

Rathi Nikhil1,Singla Rajesh1,Tiwari Sheela1

Affiliation:

1. ICE Department, Dr. B. R. Ambedkar NIT Jalandhar, Punjab, India

Abstract

In the recent past, the web (internet) has emerged as the most interactive authentication system for all of us (i.e. Internet banking passwords, system or building access, and e-payment platforms, etc.) and as a result, traditional authentication systems (like passwords or token-based) are never again more secure i.e. they are vulnerable to attacks. As a result, the security of individual information and safe access to a system winds up prime necessities. Therefore, the EEG-based authentication system has recently become a reasonable key for high-level security. This study centers upon P300 evoked potential-based authentication system designing. In this paper, a new visual stimulus paradigm (i.e. [Formula: see text] P300 speller) using pictures of different objects as stimuli for a person authentication system is designed instead of the conventional character-based paradigm (i.e. [Formula: see text] speller) for increasing the classification accuracy and Information Transfer Rate (ITR). The trial begins by exhibiting a collection of pictures of various objects on four corners of the PC screen comprising of random object pictures (non-target) alongside password pictures (target) that trigger P300 reactions. The P300 reaction’s rightness then checks the identity of the subject concerning the focused pictures (Target). The proposed investigation model achieves higher classification accuracy of 96.78%, along with 0.03075 False Rejection Rate (FRR), 0.03297 False Acceptation Rate (FAR), and ITR of [Formula: see text]. This study has shown that P300-based authentication system has an advantage over conventional methods (Password, Token, etc.) as EEG-based systems cannot be mimicked or forged (like Shoulder surfing in case of password) and can still be used for disabled users with a brain in good running condition. The classification results revealed that the performance of the QDA classifier outperformed other classifiers based on accuracy and ITR.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3