Affiliation:
1. School of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054, P. R. China
Abstract
The early detection and intervention of artery stenosis is very important to reduce the mortality of cardiovascular disease. A novel method for predicting artery stenosis was proposed by using the input impedance of the systemic arterial tree and support vector machine (SVM). Based on the built transmission line model of a 55-segment systemic arterial tree, the input impedance of the arterial tree was calculated by using a recursive algorithm. A sample database of the input impedance was established by specifying the different positions and degrees of artery stenosis. A SVM prediction model was trained by using the sample database. 10-fold cross-validation was used to evaluate the performance of the SVM. The effects of stenosis position and degree on the accuracy of the prediction were discussed. The results showed that the mean specificity, sensitivity and overall accuracy of the SVM are 80.2%, 98.2% and 89.2%, respectively, for the 50% threshold of stenosis degree. Increasing the threshold of the stenosis degree from 10% to 90% increases the overall accuracy from 82.2% to 97.4%. Increasing the distance of the stenosis artery from the heart gradually decreases the overall accuracy from 97.1% to 58%. The deterioration of the stenosis degree to 90% increases the prediction accuracy of the SVM to more than 90% for the stenosis of peripheral artery. The simulation demonstrated theoretically the feasibility of the proposed method for predicting artery stenosis via the input impedance of the systemic arterial tree and SVM.
Publisher
National Taiwan University
Subject
Biomedical Engineering,Bioengineering,Biophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献