NUMERICAL SIMULATION AND VALIDITY OF A NOVEL METHOD FOR THE PREDICTION OF ARTERY STENOSIS VIA INPUT IMPEDANCE AND SUPPORT VECTOR MACHINE

Author:

Xiao Hanguang1

Affiliation:

1. School of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054, P. R. China

Abstract

The early detection and intervention of artery stenosis is very important to reduce the mortality of cardiovascular disease. A novel method for predicting artery stenosis was proposed by using the input impedance of the systemic arterial tree and support vector machine (SVM). Based on the built transmission line model of a 55-segment systemic arterial tree, the input impedance of the arterial tree was calculated by using a recursive algorithm. A sample database of the input impedance was established by specifying the different positions and degrees of artery stenosis. A SVM prediction model was trained by using the sample database. 10-fold cross-validation was used to evaluate the performance of the SVM. The effects of stenosis position and degree on the accuracy of the prediction were discussed. The results showed that the mean specificity, sensitivity and overall accuracy of the SVM are 80.2%, 98.2% and 89.2%, respectively, for the 50% threshold of stenosis degree. Increasing the threshold of the stenosis degree from 10% to 90% increases the overall accuracy from 82.2% to 97.4%. Increasing the distance of the stenosis artery from the heart gradually decreases the overall accuracy from 97.1% to 58%. The deterioration of the stenosis degree to 90% increases the prediction accuracy of the SVM to more than 90% for the stenosis of peripheral artery. The simulation demonstrated theoretically the feasibility of the proposed method for predicting artery stenosis via the input impedance of the systemic arterial tree and SVM.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3