MULTI-SCALE DIRECTED ACYCLIC GRAPH-CNN FOR AUTOMATED CLASSIFICATION OF DIABETIC RETINOPATHY FROM OCT IMAGES

Author:

Sunija A. P.1,Krishna Adithya K.1,Gopi Varun P.1ORCID,Palanisamy P.1

Affiliation:

1. Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli, Tamil Nadu 620015, India

Abstract

Diabetic Retinopathy (DR) is the principal cause of vision loss that interrupts the regular interaction of vascular, neural, and retinal constituents leading to impaired neuronal function and retinal abnormalities. Diagnosis of DR from Optical Coherence Tomography (OCT) image is difficult and time-consuming because several small features must be identified and graded, which results in a strenuous diagnosis when integrated with the complexity of the grading system. This study focuses on classifying DR from normal Spectral Domain-OCT (SD-OCT) images using the Directed Acyclic Graph (DAG) network without any pre-processing techniques. The proposed DAG-CNN model comprises 16 convolutional blocks, which learns multi-scale features automatically from multiple layers in the convolutional network and combines them effectively for the DR and normal prediction. The proposed model is tested on the public OCTID_DR and private LFH_DR SD-OCT databases containing DR and healthy OCT images. The model achieved an accuracy, precision, recall, F1-score, and AUC on OCTID_DR database of 0.9841, 0.9727, 0.9818, 0.9772, and 0.9836, respectively; and on LFH_DR database the respective values are 0.9988, 1, 0.9976, 0.9988, and 0.9988 with only 0.1569 Million of learnable parameters. This method significantly reduces the number of learnable parameters and the model’s computational complexity in terms of memory required and FLoating point OPerations (FLOPs). Guided Gradient-weighted Class Activation Mapping (Grad-CAM) is performed to highlight the regions of SD-OCT images that contribute to the decision of the classifier. Our model significantly surpasses the accuracy of the existing models with lower resource consumption and higher real-time performance.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3