IMPROVEMENT OF THE PERFORMANCE OF FINGERPRINT VERIFICATION USING A COMBINATORIAL APPROACH

Author:

Alimardani Fatemeh1,Boostani Reza1

Affiliation:

1. Department of Computer Science Engineering and Information Technology, Shiraz University, Shiraz, Iran

Abstract

Fingerprint verification systems have attracted much attention in secure organizations; however, conventional methods still suffer from unconvincing recognition rate for noisy fingerprint images. To design a robust verification system, in this paper, wavelet and contourlet transforms (CTS) were suggested as efficient feature extraction techniques to elicit a coverall set of descriptive features to characterize fingerprint images. Contourlet coefficients capture the smooth contours of fingerprints while wavelet coefficients reveal its rough details. Due to the high dimensionality of the elicited features, across group variance (AGV), greedy overall relevancy (GOR) and Davis–Bouldin fast feature reduction (DB-FFR) methods were adopted to remove the redundant features. These features were applied to three different classifiers including Boosting Direct Linear Discriminant Analysis (BDLDA), Support Vector Machine (SVM) and Modified Nearest Neighbor (MNN). The proposed method along with state-of-the-art methods were evaluated, over the FVC2004 dataset, in terms of genuine acceptance rate (GAR), false acceptance rate (FAR) and equal error rate (EER). The features selected by AGV were the most significant ones and provided 95.12% GAR. Applying the selected features, by the GOR method, to the modified nearest neighbor, resulted in average EER of [Formula: see text]%, which outperformed the compared methods. The comparative results imply the statistical superiority ([Formula: see text]) of the proposed approach compared to the counterparts.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3