ENSEMBLE MODEL WITH IMPROVED U-NET-BASED SEGMENTATION FOR LEUKEMIA DETECTION

Author:

Hasan Mehadi1ORCID,Vijay M.2,Sharanyaa S.3,Tejaswi Vinnakota Sai Durga4

Affiliation:

1. Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas 77030, USA

2. Department of Computer Science and Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, Tamil Nadu 626126, India

3. Department of Information Technology, Panimalar Engineering College, Chennai 600123, Tamil Nadu, India

4. Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Andhra Pradesh 522302, India

Abstract

An essential component of the immune system that aids in the fight against pathogens is white blood cells. One of the most prevalent blood diseases, leukemia can be fatal if not properly diagnosed. Diagnosing this disease at an early stage may reduce the severity of the disease. This research intends to propose an ensemble model with improved U-net for leukemia detection (EMIULD) with the following four phases: preprocessing, segmentation, feature extraction and detection. The preprocessing step involves preprocessing the blood smear image, which includes filtering and scaling the image. The segmentation phase is applied to the preprocessed image, and U-Net-based segmentation is used to segment the image. As a result, features for the segmented images are extracted, including better Local Gabor XOR Pattern (LGXP), area, and grid-based form features. The extracted features are fed into the suggested ensemble model, which consists of Deep Convolutional Neural Network (DCNN), Support Vector Machine (SVM) and Random Forest (RF) classifiers, with the purpose of detecting leukemia. Finally, the proposed Bidirectional Long Short-Term Memory (Bi-LSTM) network to predict whether the given blood smear image is leukemia or not. The suggested model attained the best outcome when evaluated over the extant approaches.

Publisher

National Taiwan University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3