FINITE ELEMENT ANALYSIS OF A DEVICE FOR ALVEOLAR OSTEOGENIC DISTRACTION IN HUMAN MANDIBLE

Author:

Cerrolaza M.12,Carrero W.1,Cedeño J.3,Valencia L.1

Affiliation:

1. National Institute of Bioengineering, Central University of Venezuela, Caracas, Venezuela

2. International Center for Numerical Methods in Engineering (CIMNE), Polytechnic University of Catalonia, Spain

3. Oral Surgery Department, Faculty of Dentistry, Central University of Venezuela, Caracas, Venezuela

Abstract

Distractor devices are implanted temporarily in the bony structure in order to regenerate the bone tissue required and then be removed from the distraction site at the end of the consolidation period of callus. In this research, an osteogenic alveolar distractor (OAD) to deal with jaw bone deficiency in the alveolar area is proposed and described in this study. It addresses the FEM analysis of the proposed model of an OAD under physiological loading after the implantation. A finite element model subjected to physiological load exerted by the voluntary protrusion of the tongue on the alveolar distractor was analyzed and developed. The applied biological loads were the forces generated by the involuntary movement of the tongue against the distal end of the assembly. Both of them act on the head of the distractor screw, in the same direction but in opposite directions. The distraction device has been simulated on the alveolar bone, taking into account the most critical conditions that may occur during the distraction osteogenesis. The alveolar distractor proposed has a geometry that allows, by using only two intra-cortical screws, the attachment of the base plate to the alveolar bone without sacrificing a large periosteum area of the periosteum, which is primarily responsible for blood supply and nutrient source to the bone segment being distracted. The resulting stresses were lower than those corresponding to the resistance threshold in the bone.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3