COMPUTATIONAL STUDY OF THE INFLUENCE OF BIFURCATION ANGLE ON HAEMODYNAMICS AND OXYGEN TRANSPORT IN THE CAROTID BIFURCATION

Author:

Tada Shigeru1

Affiliation:

1. Department of Applied Physics, National Defence Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan

Abstract

In this study, blood flow associated with oxygen transport in the human carotid bifurcation was investigated numerically to assess the effects of bifurcation geometry on distribution and magnitude of the wall shear stress (WSS) and Sherwood number (Sh: dimensionless oxygen wall flux) at the favourable site of atherosclerotic lesion. Three-dimensional average models of the rigid-walled carotid bifurcation were constructed to perform simulations of steady blood flow under the wall boundary condition of a constant oxygen tension. The results demonstrated that changes in the bifurcation angle significantly altered the distribution of both the WSS and the Sh, even though the pattern of the axial flow was not very sensitive to the change in bifurcation angle. Flow with large inertia bifurcated at the flow divider and created a flow recirculation zone with low WSS and Sh on the outer wall of the internal carotid artery (ICA) sinus, where atherosclerotic lesions tend to develop. A wider bifurcation angle made the area of low Sh in the ICA sinus smaller, but the level of Sh along the outer wall of the ICA sinus extremely low. Another finding was that low Sh was associated with high WSS at the region distal to the ICA sinus. The Sh distribution did not readjust as fast as the WSS in this region, as reflected by the different rates of recovery of the WSS and Sh, thus uncoupling the transport process of oxygen transport from WSS.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3