CLASSIFICATION OF GLAUCOMA USING SIMPLIFIED-MULTICLASS SUPPORT VECTOR MACHINE

Author:

Renukalatha S.1ORCID,Suresh K. V.2

Affiliation:

1. Department of Computer Science & Engineering, Sri Siddhartha Institute of Technology, Tumkur 572105, India

2. Department of Electronics & Communication Engineering, Siddaganga Institute of Technology, Tumkur 572103, India

Abstract

Detection and diagnosis of glaucoma disease of eye fundus images at early stage is very important as this disorder leads to complete loss of vision if ignored. Usually, 80–90% of glaucoma cases are analyzed manually by ophthalmologists. As the manual analysis varies from one expert to other, diagnosis cannot be effective. Hence, there is a need for automatic assessment of glaucoma disease using computer aided diagnosis (CAD). Many researchers have devised several CAD techniques for glaucoma analysis using various classification techniques. However, most of the classifiers are efficient only for two level classification to detect whether disease is glaucoma or not. But, glaucoma disease has several stages and demands multilevel approaches with high degree of classification accuracy. Among several multiclass methods, literature suggests multiclass support vector technique (MSVM) as a better performing statistical classifier. However, many MSVMS suffer from data loss during training phase. To address this issue, a robust hybrid classification approach consisting of Naïve Bayes binary classifier in the first stage and simplified multiclass support vector machine (Sim-MSVM) in the second stage is proposed in this paper.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3