Affiliation:
1. Department of Computer Science & Engineering, Sri Siddhartha Institute of Technology, Tumkur 572105, India
2. Department of Electronics & Communication Engineering, Siddaganga Institute of Technology, Tumkur 572103, India
Abstract
Detection and diagnosis of glaucoma disease of eye fundus images at early stage is very important as this disorder leads to complete loss of vision if ignored. Usually, 80–90% of glaucoma cases are analyzed manually by ophthalmologists. As the manual analysis varies from one expert to other, diagnosis cannot be effective. Hence, there is a need for automatic assessment of glaucoma disease using computer aided diagnosis (CAD). Many researchers have devised several CAD techniques for glaucoma analysis using various classification techniques. However, most of the classifiers are efficient only for two level classification to detect whether disease is glaucoma or not. But, glaucoma disease has several stages and demands multilevel approaches with high degree of classification accuracy. Among several multiclass methods, literature suggests multiclass support vector technique (MSVM) as a better performing statistical classifier. However, many MSVMS suffer from data loss during training phase. To address this issue, a robust hybrid classification approach consisting of Naïve Bayes binary classifier in the first stage and simplified multiclass support vector machine (Sim-MSVM) in the second stage is proposed in this paper.
Publisher
National Taiwan University
Subject
Biomedical Engineering,Bioengineering,Biophysics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献