USING ATLAS OF HEART SHAPES FOR SIMULATION OF BLOOD FLOW IN LEFT VENTRICLE

Author:

Moosavi Mir-Hossein1,Fatouraee Nasser1,Katoozian Hamid2,Pashaei Ali3,Frangi Alejandro F.34

Affiliation:

1. Biological Fluid Mechanics Research Laboratory, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran

2. Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran

3. Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Universitat Pompeu Fabra and CIBER-BBN, Barcelona, Spain

4. Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom

Abstract

Integrative modeling of cardiac system is important for understanding the complex biophysical function of the heart]. To this end, multimodal cardiovascular imaging plays an important role in providing the computational domain, the boundary/initial conditions, and tissue function and properties. In particular, the incorporation of blood flow in the physiological models can help to simulate the hemodynamic properties and their effects on cardiac function. In this paper, we present a multimodal framework for quantitative and subject-specific analysis of blood flow in the cardiac chambers, including the left ventricle (LV). The 3D geometries of the LV at different time steps are extracted from medical images using an atlas of LV shape. The motion of the myocardium wall is used to extract the moving boundary data of the computational geometry. The data is used as a constraint for the computational fluid dynamics (CFD). An arbitrary Lagrangian–Eulerian (ALE) finite element method (FEM) formulation is used to derive a numerical solution of the transient dynamic equation of the fluid domain. With this method, simulation results describe detailed flow characteristics (such as velocity, pressure and wall shear stress) in the computational domain. The personalized hemodynamic characteristics obtained with the proposed approach can provide clinical value for diagnosis and treatment of abnormalities related to disturbed blood flow such as in myocardial remodeling and aortic sinus lesion formation.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3