CLASSIFICATION OF sEMG SIGNALS USING INTEGRATED NEURAL NETWORK WITH SMALL SIZED TRAINING DATA

Author:

Sun Baofeng1,Chen Wanzhong1

Affiliation:

1. College of Communication Engineering, Jilin University, Changchun, 130025, China

Abstract

The sEMG (Surface electromyography) signals detected from activated muscles can be used as a control source for prosthesis. So an efficient and accurate method for the classification of sEMG signal patterns has become a hot research in recent years. Artificial neural network is a popular used method in this field, however, most neural networks require large numbers of samples in the training stage to obtain the potential relationships between input feature vectors and the outputs.In this paper, Integrated back propagation neural network (IBPNN) is used to classify sEMG signals acquired during five different hand motions. The correct classification rates of IBPNN for the five hand movements are significantly higher than that of BPNN and Elman neural network. This reveals that IBPNN achieves the best performance with a small sized training data and can be used in control systems on prosthetic hands and other robotic devices based on electromyography pattern recognition.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3