COMPARISON OF PLGA, PCL, AND CHITOSAN IN SALIVARY GLAND BRANCHING MORPHOGENESIS

Author:

Yang Tsung-Lin123,Hsiao Ya-Chuan4,Young Tai-Horng1

Affiliation:

1. Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan

2. Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan

3. Department of Otolaryngology, Yun-Lin Branch of National Taiwan University Hospital, Douliu, Yunlin, Taiwan

4. Department of Ophthalmology, Zhongxing Branch, Taipei City Hospital, Taipei, Taiwan

Abstract

Branching morphogenesis is a fundamental morphogenetic process in generating glandular tissues. Although the mechanism of branching morphogenesis has been well-explored in the salivary gland development, its interaction with different biodegradable materials has never been investigated. For the purpose of salivary gland regeneration, recapitulation of morphogenetic processes on biodegradable materials might be requisite. Toward this aim, biodegradable biomaterials including poly-lactic-co-glycolic acid (PLGA), poly-epsilon-caprolactone (PCL), and chitosan were examined in the submandibular gland (SMG) culture systems to elucidate their possible impact on salivary morphogenesis. It was found that when SMG explants were cultured on PLGA and PCL, the explants failed to form well-developed branching phenotypes with limited cell migration (5.6 ± 8.8 μm; 10.0 ± 14.1 μm) and decreasing cell viability (56.9% ± 12.5%; 50.3% ± 8.1%). On the contrary, explants cultured on chitosan showed well-developed branches, which were superior in number to those on the control substrata, without any alteration of the morphogenetic phenotypes. Furthermore, the increased cell migration (267.8 ± 45.2 μm) and explants viability (146.8% ± 18.4%) along with the greater deposition of type III collagen, altogether account for better SMG morphogenesis on chitosan. According to the results, it was found that branching morphogenesis of SMG was affected by different biodegradable materials. Chitosan might be an appropriate biodegradable material for salivary morphogenesis, and has applicable potential in the regeneration of salivary tissue.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3