DETECTION OF PANCREATIC CANCER CELLS (SUIT-2) USING AN FET-BASED BIOSENSOR WITH AN EXTENDED Au GATE

Author:

Cho Byunghyun1,Lee Hee-Ho2,Shin Jang-Kyoo2,Murata Masaharu1,Ohuchida Kenoki1,Hashizume Makoto1

Affiliation:

1. Faculty of Medical Science, Kyushu University, Japan

2. School of Electronics Engineering, Kyungpook National University, Korea

Abstract

In this paper, we assess the feasibility of detecting human pancreatic cancer cells using a field effect transistor (FET)-based biosensor with an extended Au gate for medical application. Pancreatic cancer is one of the most fatal cancers, and is very difficult to diagnose in its early stages. Gemcitabine is an anticancer drug, and when used in chemotherapy it induces cell death. During apoptosis, the surface potential of the pancreatic cancer cells is changed by gemcitabine. In the present study, this change was detected using an FET-based biosensor. This biosensor was fabricated with an extended Au gate, whose surface is a sensing area for cancer cells. A null-balancing circuit was used in the measurement system, and the LabVIEW software platform allowed the immune-reaction at the Au gate to be detected as an output voltage. The cancer cells were incubated for one day; during this time, the cancer cells adhered to the Au extended gate surface. As gemcitabine was introduced to the cancer cells in vitro, changes in the output of the biosensor were monitored. Pancreatic cancer cells with a resistance to gemcitabine were used to verify that the change in the output of the biosensor was due only to the interaction between the cancer cells and the gemcitabine. We also investigated the relationship between the starting time of the reaction and the concentration of the anticancer drug.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3