QUANTIFICATION OF MENTAL STRESS USING COMPLEXITY ANALYSIS OF EEG SIGNALS

Author:

Ahammed Kawser1ORCID,Ahmed Mosabber Uddin2

Affiliation:

1. Department of Electrical and Electronic Engineering, Jatiya Kabi Kazi Nazrul Islam University, Trishal, Mymensingh, Bangladesh

2. Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, Bangladesh

Abstract

Detection of mental stress has been receiving great attention from the researchers for many years. Many studies have analyzed electroencephalogram signals in order to estimate mental stress using linear methods. In this paper, a novel nonlinear stress assessment method based on multivariate multiscale entropy has been introduced. Since the multivariate multiscale entropy method characterizes the complexity of nonlinear time series, this research determines the mental stress of human during cognitive workload using complexity of electroencephalogram (EEG) signals. To perform this work, 36 subjects including 9 men and 27 women were participated in the cognitive workload experiment. Multivariate multiscale entropy method has been applied to electroencephalogram data collected from those subjects for estimating mental stress in terms of complexity. The complexity feature of brain electroencephalogram signals collected during resting and cognitive workload has shown statistically significant ([Formula: see text]) differences across brain regions and mental tasks which can be implemented practically for building stress detection system. In addition, the complexity profile of electroencephalogram signals has shown that higher stress is reflected in good counting compared to bad counting. Moreover, the support vector machine (SVM) has shown promising classification between resting and mental counting states by providing 80% sensitivity, 100% specificity and 90% classification accuracy.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3