CROSS-REFERENCE MAXIMUM LIKELIHOOD ESTIMATE RECONSTRUCTION FOR POSITRON EMISSION TOMOGRAPHY

Author:

CHEN CHUNG-MING1,LU HENRY HORNG-SHING2,HSU YUN-PAI2

Affiliation:

1. Institute of Biomedical Engineering , National Taiwan University, Taipei, Taiwan, R.O.C.

2. Institute of Statistics, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

Abstract

Maximum likelihood estimate (MLE) is a widely used approach for PET image reconstruction. However, it has been shown that reconstructing emission tomography based on MLE without regularization would result in noise and edge artifacts. In the attempt to regularize the maximum likelihood estimate, we propose a new and efficient method in this paper to incorporate the correlated but possibly incomplete structure information which may be derived from expertise, PET systems or other imaging modalities. A mean estimate smoothing the MLE locally within each region of interest is derived according to the boundaries provided by the structure information. Since the boundaries may not be correct, a penalized MLE using the mean estimate is sought. The resulting reconstruction is called a cross-reference maximum likelihood estimate (CRMLE). The CRMLE can be obtained through a modified EM algorithm, which is computation and storage efficient. By borrowing the strength from the correct portion of boundary information, the CRMLE is able to extract the useful information to improve reconstruction for different kinds of incomplete and incorrect boundaries in Monte Carlo studies. The proposed CRMLE algorithm not only reduces the estimation errors, but also preserves the correct boundaries. The penalty parameters can be selected through human interactions or automatically data-driven methods, such as the generalized cross validation method.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three penalized EM-type algorithms for PET image reconstruction;Computers in Biology and Medicine;2012-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3