ARTIFICIAL INTELLIGENCE FOR THE PREDICTION OF BLADDER CANCER

Author:

ABBOD M. F.1,CATTO J. W. F.2,CHEN M.1,LINKENS D. A.1,HAMDY F. C.2

Affiliation:

1. Department of Automatic Control and Systems Engineering, United Kingdom

2. The Academic Urology Unit, University of Sheffield, Sheffield, United Kingdom

Abstract

New techniques for the prediction of tumour behaviour are needed as statistical analysis has a poor accuracy and is not applicable to the individual. Artificial intelligence (AI) may provide these suitable methods. We have previously shown that the predictive accuracies of neuro-fuzzy modelling (NFM) and artificial neural networks (ANN), two methods of AI, are superior to traditional statistical methods for the behaviour of bladder cancer (Catto et al, 2003). In this paper, we explain the AI techniques required to produce these predictive models. We used 9 parameters, which were a combination of experimental molecular biomarkers and conventional clinicopathological data, to predict the risk of tumour progression in a population of 109 patients with bladder cancer, NFM, using fuzzy logic to model data, achieved similar or superior predictive accuracy to ANN, which required cross-validation. However, unlike the impenetrable opaque structure of neural networks, the rules of NFM are transparent, enabling validation from clinical knowledge and the manipulation of input variables to allow exploratory predictions.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3