AUTOMATED SEGMENTATION OF COVID-19 REGIONS FROM LUNG CT IMAGES USING WATERSHED ALGORITHM AND CLASSIFICATION USING MACHINE LEARNING CLASSIFIERS

Author:

Guhan Bhargavee1,Sowmiya S.1,Shivani Bukka1,Snekhalatha U.1,Rajalakshmi T.2

Affiliation:

1. Department of Biomedical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Tamil Nadu, India

2. Department of Electronics and Communication Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Tamil Nadu, India

Abstract

The COVID-19 pandemic originated in Wuhan, China in December 2019 and has since affected over 200 countries worldwide. The highly contagious Coronavirus primarily affects the respiratory system, causing pulmonary inflammation that can be visualized through medical imaging such as CT and X-rays. Conventional testing methods include PCR and antibody tests. Shortage of test kits in hospitals as well as time taken for results to be received can be compensated through medical imaging. Therefore, there is a need for an automated system, which is accurate and robust in detection of Covid-19 from medical radiographs for clinical practice. The objectives of our study are as follows: (i) To segment the lung CT images using a hybrid watershed and fuzzy c-means algorithm. (2) To extract various textural features using the GLCM algorithm. (iii) To implement machine learning classifiers for classification of COVID and non-COVID image classes. Our dataset consisting of 60 chest CT images of COVID-19 and non-COVID-19 patients was pre-processed and segmented using a hybrid watershed and fuzzy c-means algorithm. Then, textural features were extracted from the segmented ROI using the GLCM algorithm. Finally, the images were classified into COVID and non-COVID classes using three machine learning classifiers namely Naïve Bayes, SVM and K-star. Naïve Bayes classifier achieved the highest accuracy of 95%, while SVM achieved 93% accuracy. The ROC curves were also obtained, with AUC of 0.98. Thus, our proposed system has shown promising results in the classification of lung CT images into the two classes namely COVID and non-COVID.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3