Affiliation:
1. National Aviation University
Abstract
The rapid development of unmanned aerial vehicles (UAVs), as well as the expansion of the list of actions performed by modern UAVs, led to increased requirements for the safety and reliability of data transmission. In the context of warfare, when confidential information is collected, the protection of such information is a top priority. The practical level of conducting aerial reconnaissance during current warfare demonstrates the urgent need to create UAV which capable of performing flight tasks and aerial reconnaissance in the mode of installed radio interference, and also emphasizes the importance of ensuring the data confidentiality about target objects transmitted by an optical channel for the implementation of their processing in automated systems. The paper provides a review and comparative analysis of modern cryptoalgorithms that are used to ensure data confidentiality during their transmission by radio channel from UAV to ground objects. There are the system of criteria (multi criteria analysis) was used to compare following cryptographic algorithms (similar to AES, NESSIE, etc competitions): block and key sizes; modes of operation; encryption speed; memory requirements; resistance (security) to cryptanalysis. The conducted analysis showed that each cryptographic algorithm has advantages and disadvantages. Also, there is no universal cryptographic algorithm that capable to resolve all privacy problems in UAV. According to the limited resources in the process of UAV operation, it is necessary to create a universal set (dataset) of cryptographic algorithms that could solve various problems in different conditions including different aspects of UAV exploitation. It is these studies that will be devoted to the further work of the authors within the framework of the ongoing scientific project.
Publisher
Borys Grinchenko Kyiv University
Reference31 articles.
1. Du, X., Tang, Y., Gou, Y., Huang, Z. (2021). Data Processing and Encryption in UAV Radar. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 1445-1450. DOI: 10.1109/IMCEC51613.2021.9482373.
2. Thompson, R. B., Thulasiraman, P. (2016). Confidential and authenticated communications in a large fixed-wing UAV swarm. IEEE International Symposium on Network Computing and Applications (NCA), 375-382.
3. Koukou, Y.M., Othman, S.H., Siraj, M. M., Nkiama, H. (2016) .Comparative Study of AES, Blowfish, CAST-128 and DES Encryption Algorithm. IOSR Journal of Engineering (IOSRJEN), 6(6), 1-7.
4. Singhal, N.,.Raina, J.P.S. (2011). Comparative Analysis of AES and RC4 Algorithms for Better Utilization. International Journal of Computer Trends and Technology (IJCTT), 1(3), 259-263.
5. Kumar, B. J. S., Raj, V. K. R., Nair, A. (2017). Comparative study on AES and RSA algorithm for medical images. International Conference on Communication and Signal Processing (ICCSP), 501-504.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献