DEVELOPMENT OF A DECISION SUPPORT SYSTEM FOR ANALYSIS OF EMERGENCIES ON URBAN TRANSPORT

Author:

Lakhno Valerii1ORCID,Husiev Borys1ORCID,Blozva Andrii1ORCID,Sahun Andrii1ORCID,Osypova Tetiana1ORCID,Porokhnia Ivan1ORCID

Affiliation:

1. National University of Life and Environmental Sciences of Ukraine

Abstract

The article discusses some aspects of the design of a decision support system (DSS) module during the analysis of major accidents or emergencies in urban transport in large cities, megalopolises, as well as in Smart City. It is shown that the computational core of such a DSS can be based on the methods of cluster analysis (CA). It is shown that the implementation of even basic spacecraft algorithms in the computational core of the DSSS allows an iterative search for optimal solutions to prevent a large number of emergencies in urban transport by establishing characteristic signs of accidents and emergencies and measures of proximity between two objects. It is shown that such a toolkit as DSS can provide all interested parties with a scientifically grounded classification of multidimensional observations, which summarize the set of selected indicators and make it possible to identify internal connections between emergencies in urban transport. The DSS module for analyzing emergencies in urban transport is described. It has been found that to solve such a problem, it is possible to use the "weighted" Euclidean distance in the computational core of the DSS. It is this parameter that makes it possible to take into account the significance of each characteristic of emergency situations in urban transport, which, in turn, will contribute to obtaining reliable analysis results. It is shown that the spacecraft methods can also be in demand when, along with the analysis of emergency situations in urban transport, problems of designing and reconstructing the configurations of urban street-road networks are solved in parallel. This task, in particular, requires an analysis phase (not least using CA methods) in order to minimize unnecessary uncompensated costs in the event of errors in the road network. When solving such a problem, sections of the urban street and road network are analyzed in order to identify problem areas that need reconstruction or redevelopment. The use of CA methods in such conjugate problems is due to the absence of a priori hypotheses regarding the classes that will be obtained as a result.

Publisher

Borys Grinchenko Kyiv University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3