DESIGN OF BIOMETRIC PROTECTION AUTHENTIFICATION SYSTEM BASED ON K-AVERAGE METHOD

Author:

Voznyi Yaroslav1ORCID,Nazarkevych Mariia1ORCID,Hrytsyk Volodymyr1ORCID,Lotoshynska Nataliia1ORCID,Havrysh Bohdana1ORCID

Affiliation:

1. Lviv Polytechnic National University

Abstract

The method of biometric identification, designed to ensure the protection of confidential information, is considered. The method of classification of biometric prints by means of machine learning is offered. One of the variants of the solution of the problem of identification of biometric images on the basis of the k-means algorithm is given. Marked data samples were created for learning and testing processes. Biometric fingerprint data were used to establish identity. A new fingerprint scan that belongs to a particular person is compared to the data stored for that person. If the measurements match, the statement that the person has been identified is true. Experimental results indicate that the k-means method is a promising approach to the classification of fingerprints. The development of biometrics leads to the creation of security systems with a better degree of recognition and with fewer errors than the security system on traditional media. Machine learning was performed using a number of samples from a known biometric database, and verification / testing was performed with samples from the same database that were not included in the training data set. Biometric fingerprint data based on the freely available NIST Special Database 302 were used to establish identity, and the learning outcomes were shown. A new fingerprint scan that belongs to a particular person is compared to the data stored for that person. If the measurements match, the statement that the person has been identified is true. The machine learning system is built on a modular basis, by forming combinations of individual modules scikit-learn library in a python environment.

Publisher

Borys Grinchenko Kyiv University

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3