DEVELOPMENT OF MACHINE LEARNING METHOD WITH BIOMETRIC PROTECTION WITH NEW FILTRATION METHODS

Author:

Nazarkevych MariyaORCID,Voznyi YaroslavORCID,Nazarkevych HannaORCID

Abstract

Biometric images were processed and filtered by a newly developed Ateb-Gabor wavelet filter. Identification of biometric images was performed by machine learning methods. The Gabor filter based on Ateb functions is effective for filtering because it contains generalizations of trigonometric functions. Developed wavelet transform of Ateb-Gabor function. It is shown that the function depends on seven parameters, each of which makes significant changes in the results of filtering biometric images. A study of the wavelet Ateb-Gabor function was performed. The graphical dependences of the Gabor filter wavelet and the Ateb-Gabor filter wavelet are constructed. The introduction of wavelet transforms reduces the complexity of Ateb-Gabor filter calculations by simplifying function calculations and reducing filtering time. The complexity of the algorithms for calculating the Gabor filter wavelet and the Ateb-Gabor filter wavelet is evaluated. Ateb-Gabor filtering allows you to change the intensity of the entire image, and to change certain ranges, and thus change certain areas of the image. It is this property that biometric images should have, in which the minions should be contrasting and clear. Ateb functions have the ability to change two rational parameters, which, in turn, will allow more flexible control of filtering. The properties of the Ateb function are investigated, as well as the possibility of changing the amplitude of the function, the oscillation frequency to the numerical values ​​of the Ateb-Gabor filter. By using the parameters of the Ateb function, you can get a much wider range of shapes and sizes, which expands the number of possible filtering options. You can also implement once filtering, taking into account the direction of the minutes and reliably determine the sharpness of the edges, rather than filtering batocrates. The reliability results were tested on the basis of NIST Special Database 302, and good filtration results were shown. This was confirmed by a comparison experiment between the Wavelet-Gabor filtering and the Ateb-Gabor wavelet function based on the measurement of the PSNR signal-to-noise ratio.

Publisher

Borys Grinchenko Kyiv University

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of the Efficiency of Using Ateb-Functions in Modeling Oscillatory Processes for Networks;2023 IEEE 18th International Conference on Computer Science and Information Technologies (CSIT);2023-10-19

2. ANALYSIS AND EVALUATION OF BIOMETRIC AUTHENTICATION MEANS BASED ON THE IMAGE OF THE FACE AND IRIS OF THE STAFF OF CRITICAL INFRASTRUCTURE FACILITIES;Cybersecurity: Education, Science, Technique;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3