Predicting optimal endotracheal tube size and depth in pediatric patients using demographic data and machine learning techniques

Author:

Kim HyeonsikORCID,Yoon Hyun-KyuORCID,Lee HyeonhoonORCID,Jung Chul-WooORCID,Lee Hyung-ChulORCID

Abstract

Background: Use of endotracheal tubes (ETTs) with appropriate size and depth can help minimize intubation-related complications in pediatric patients. Existing age-based formulae for selecting the optimal ETT size present several inaccuracies. We developed a machine learning model that predicts the optimal size and depth of ETTs in pediatric patients using demographic data, enabling clinical applications. Methods: Data from 37,057 patients younger than 12 years who underwent general anesthesia with endotracheal intubation were retrospectively analyzed. Gradient boosted regression tree (GBRT) model was developed and compared with traditional age-based formulae. Results: The GBRT model demonstrated the highest macro-averaged F1 scores of 0.502 (95% CI 0.486, 0.568) and 0.669 (95% CI 0.640, 0.694) for predicting the uncuffed and cuffed ETT size (internal diameter [ID]), outperforming the age-based formulae that yielded 0.163 (95% CI 0.140, 0.196, P < 0.001) and 0.392 (95% CI 0.378, 0.406, P < 0.001), respectively. In predicting the ETT depth (distance from tip to lip corner), the GBRT model showed the lowest mean absolute error (MAE) of 0.71 cm (95% CI 0.69, 0.72) and 0.72 cm (95% CI 0.70, 0.74) compared to the age-based formulae that showed an error of 1.18 cm (95% CI 1.16, 1.20, P < 0.001) and 1.34 cm (95% CI 1.31, 1.38, P < 0.001) for uncuffed and cuffed ETT, respectively.Conclusions: The GBRT model using only demographic data accurately predicted the ETT size and depth. If these results are validated, the model may be practical for predicting optimal ETT size and depth for pediatric patients.

Funder

Korea Health Industry Development Institute

Ministry of Health and Welfare

Publisher

The Korean Society of Anesthesiologists

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3